高越,王可欣,张耀峰,孙玉梦,张晓东,王霄英.基于深度学习在CT图像上分割胆囊的研究[J].放射学实践,2024,(06):755-760 |
基于深度学习在CT图像上分割胆囊的研究 |
|
|
DOI:10.13609/j.cnki.1000-0313.2024.06.007 |
中文关键词: 深度学习 胆囊 体层摄影术,X线计算机 人工智能 图像分割 |
基金项目: |
|
摘要点击次数: 858 |
全文下载次数: 1255 |
中文摘要: |
【摘要】目的:基于深度学习方法训练模型,研究其用于腹部CT图像上分割胆囊并自动测量的可行性。方法:从本院PACS系统搜集2016年1月12日至2021年5月28日行腹部CT检查的患者,从中选取1154位患者的1181次CT检查图像,共得到2559个图像序列用于训练模型。由2位影像科医师标注胆囊,将全部数据按8:1:1的比例随机分为训练集(n=2043)、调优集(n=245)和测试集(n=271),训练3D U-net模型分割胆囊并自动测量。另搜集2022年9月10-19日的腹部CT扫描图像,随机选取共141位患者的141次检查的270个图像序列作为外部验证数据集。以外部验证集的预测结果评价模型的效能。使用Dice相似系数(DSC)、体积相似度(VS)和Hausdorff距离(HD)定量评价模型分割胆囊区域的效能。使用Bland-Altman分析评价模型自动测量的胆囊体积、径线、平均CT值与医师标注测量值的一致性。结果:外部验证集的DSC、VS、HD分别为0.980(0.970,0.980)、0.990(0.990,1.000)、1.69 (1.27,2.45)mm,各数据集之间DSC、VS和HD的差异均有统计学意义(P均<0.001)。外部验证集中模型预测和医师标注测量的胆囊体积、CT值、三维径线的95%一致性界限(LoA)的可信区间分别为(-2.07,3.36)、(-1.55,1.15)、(-1.28,1.47)、(-3.34,4.07)和(-1.11,2.15),分别有2.6%、3.7%、3.7%、1.1%和3.7%的点落在95%LoA以外。结论:基于深度学习模型可在腹部CT图像上自动分割胆囊区域,是将来进一步胆囊病变智能诊断的基础。 |
|
查看全文
下载PDF阅读器 |
关闭 |