・综述・

IVIM 扩散加权成像在前列腺癌中的应用研究

覃涛, 邢芬, 吴光耀

【摘要】 前列腺癌是老年男性常见疾病,前列腺癌早期诊断是治疗和预后关键。MRI能较好显示前列腺解剖结构和 相邻软组织关系,DWI是目前无创性检测活体水分子运动方法。近年来,在常规 DWI基础上开发多 b 值体素内不相干运 动(IVIM)扩散加权成像序列不仅能反映组织水分子扩散信息,亦能反映组织灌注信息。本文旨在综述 IVIM-DWI 原理、 特点及在前列腺癌诊断中的应用。

【关键词】 前列腺;磁共振成像;体素内不相干运动成像;扩散加权成像

【中图分类号】R445.2; R737.25 【文献标识码】A 【文章编号】1000-0313(2015)07-0790-03

DOI:10.13609/j. cnki. 1000-0313. 2015. 07. 020

随着年龄的增长,前列腺癌呈明显高发趋势,高年龄组的 发病率逐渐加重,前列腺癌正在成为严重影响我国男性健康的 泌尿系恶性肿瘤^[1],早期诊断是治疗及预后的关键。MRI是生 物标记,发现和描述肿瘤,管理肿瘤效果的重要工具。多模态 MRI 是前列腺癌早期诊断最佳影像学模式^[2-3], MRI 介导下前 列腺癌组织活检精度能显著提高^[4]。目前 MRI 成像序列包括 平扫、动态增强磁共振成像(dynamic contrast enhancement magnetic resonance imaging, DCE-MRI)、前列腺质子磁共振波 谱成像(1-hydrogen magnetic resonance spectroscopy,¹H-MRS)、扩散加权成像(diffusion weighted imaging, DWI)、扩散 张量成像(diffusion tensor imaging, DTI)、扩散峰度成像(diffusion kurtosis imaging, DKI)等。DWI 是目前无创性检测活体水 分子运动方法。近年来,在常规 DWI 基础上开发多b 值体素内 不相干运动(intravoxel incoherent movement, IVIM)扩散加权 成像序列不仅能反映组织水分子扩散信息,亦能反映组织灌注 信息。本文旨在综述 IVIM-DWI 原理、特点及在前列腺癌诊断 中的应用。

IVIM-DWI 基本原理

随着 MRI 硬件技术和计算机软件发展,上世纪八十年代提出 IVIM-DWI 概念^[5],其最早应用于脑部临床研究^[6];近年来随着 MRI 技术不断发展,已逐渐应用于体部临床研究,如肝脏^[7]、胰腺、肾脏、前列腺及宫颈等疾病。IVIM 是假设组织内水分子微观运动分为两种形式:血液灌注和组织内水分子热运动。根据 IVIM 假设,DWI 信号衰减符合双指数模型,即:

 $S(b)/S(0) = (1-f) \times exp(-bD)(扩散因素) + f \times exp[-b(D+D*)](灌注因素)^[8]$

S(b)是组织内水分子信号强度,S(0)是b值等于0时水分 子信号强度,D值为水分子扩散系数,D*值是水分子伪扩散系 数(取决于血液平均流速和毛细血管平均长度),f是灌注分数 (是指体素内毛细血管容积占整个体素容积比,来源于血液微 循环灌注,反映微循环灌注状态)。

IVIM-DWI 的特点

在 IVIM 应用前,水分子扩散运动相关功能成像已广泛应 用于临床,主要包括 DWI 和 DTI,如早期脑梗塞诊断等。常规 DWI假设水分子运动是单一、不受其他因素干扰热运动的单指 数模型,如水分子扩散受限,DWI则表现为高信号。然而,生物 体组织是非均质性结构,包括细胞内水分子运动和更多细胞外 水分子运动,多指数衰减形式更符合信号衰减,b值越大越明 显。IVIM-DWI 基于双指数模型,在施加足够不同 b 值进行 DWI采样时,采用最小二乘法求解,试图分开血液灌注及组织 内单纯水分子运动影响,获得微循环灌注信息。b值较小时, DWI 图像与 T₂WI 图像接近,反映组织内血液灌注信息;b 值较 大时,反映组织内单纯水分子扩散运动。常规 DWI 图像,通过 表观扩散系数(apparent diffusion coefficient, ADC)反映水分子 扩散程度。ADC值是双b值下信号比值,对于脑组织因有血脑 屏障,可以有效减少血液灌注影响;对于没有屏障组织,ADC值 则不能很好反映单纯水分子扩散运动;而且 ADC 值仅适应单 指数模型,仅能局限性反映复合 b 值的信息;而 IVIM 适应于双 指数模型,能客观反映组织内水分子复杂运动信号衰减。

DTI是 DWI 基础上施加多方向非线性扩散敏感梯度而获 得水分子运动各向异性信息。通过分析健侧与患侧对应区域 内平均扩散系数(mean diffusion, MD)、各向异性分数(fractional anisotrophy, FA)能定量评估水分子运动状态。其中 FA 值 是指水分子各向异性成分占整个扩散张量比例,取值 0~1。越 接近 0,表示水分子运动各向同性越大;越接近于 1,表示各向异 性越明显。而 IVIM-DWI 显示组织微循环灌注信息和组织内 水分子不规则扩散运动信息,与 DTI 侧重点不同。

测量组织灌注方法较多,但多基于外源性示踪剂或对比剂 在单位时间内对兴趣区示踪剂浓度变化动态测量,如灌注加权 成像(perfusion weighted imaging,PWI)、DCE等。PWI 能获得 局部组织相对脑血容量(rCBV)、相对脑血流量(rCBF)、平均通 过时间(MTT)等参数,定量或半定量反映组织灌注状态,多应 用于脑部疾病临床研究。PWI 通过组织内血液灌注参数间接 提示组织生长状态,如 PWI 能提示肿瘤新生血管等。不过 PWI 不能反映组织内水分子本身运动状态,而 IVIM 不仅能反 映组织灌注状态,亦能反映组织内水分子扩散状态。

作者单位:430071 武汉,武汉大学中南医院 MR 室(覃涛、邢芬、 吴光耀):443000 湖北,三峡大学仁和医院(覃涛) 作者简介:覃涛(1980-),男,湖北宜昌人,硕士研究生,主治医师,

¹F**旬四***T*:早碌(1900⁻), 另, 砌-L 且 百人, 侧 士 研 充 生, 王 沼 医 岬, 主要从事功能影像学研究。 **通讯作者**: 吴光耀, E-mail: wuguangy2002@163. com

基金项目:国家自然科学基金资助项目(81171315、81227902)

IVIM 在前列腺疾病中的应用

常规 DWI 中 ADC 值是基于水分子扩散为简单随机分子 热运动假设,水分子扩散仅取决于概率分布函数,而此函数呈 高斯线形分布,其宽度正比于扩散系数,符合单指数扩散模型。 Le Bihan 等^[5,9]报道毛细血管中血管微循环灌注在低 b 值能改 变扩散信号强度,建立了基于热能驱动水分子扩散和基于微循 环灌注扩散的 IVIM 理论。有研究显示前列腺癌中 ADC 值低 于正常前列腺组织,ADC 值与肿瘤侵袭程度呈负相关,Gleason 评分系统能评估前列腺癌侵袭程度。

基于 IVIM-DWI 双指数模型,可以获得组织f值、D值及 D*值,反映组织内水分子微观运动,能敏感区分正常组织与病 变组织,鉴别前列腺增生、炎症及肿瘤性病变等。其相关研究 报道不尽相同。Liu等^[10]研究报道前列腺癌 ADC值、D值及f 值明显低于其他组织;前列腺炎患者外周带 ADC值、D*值和f 值高于其他部位;而前列腺增生 ADC值及D*值以中央带最 高;D*值有助于鉴别前列腺癌、前列腺炎及前列腺增生,但f 值对前列腺癌鉴别诊断价值不如 ADC值。Shinmoto等^[11]对

表1 IVIM 试验参数

	发表时间	机器类型	IVIM 技术参数						
作者			TR/TE (ms)	FOV (mm)	matrix	层厚/层距 (mm)	b值 (s/mm²)	线圈	
Riches 等 ^[15]	2008.7	Philips 1.5T	2500/69	200×200	128×128	4.0/0.0	0,1,2,4,10,20,50, 100,200,400,800	直肠内线圈	
Dopfert 等 ^[8]	2011.6	Siemens 3.0T	2600/66	204/204	136 imes 136	3.0/0.0	0,50,500,800	6 通道骨盆相控阵 +直肠内线圈	
Shinmoto 等[11]	2012.2	Philips 3.0T	5132/40	—	80×80	3.5/0.1	0,10,20,30,50,80, 100,200,400,1000	6 通道相控阵线圈	
Liu 等 ^[10]	2012.6	GE 3.0T	4000/71.9	260×260	512×512	5.0/1.0	0, 300, 600, 900, 1200, 1500, 1800, 2100, 2400, 2700, 3000	8通道表面相控阵 线圈	
Liu 等[16]	2013.8	GE 3.0T	4000/71.9	260×260	512×512	5.0/1.0	单指数:0,3000。 双指数:0,300,600, 900, 1200, 1500, 1800, 2100, 2400, 2700,3000	_	
曹曙等[14]	2014.1	GE 3.0T	4584/最小值	250×250	—	4.0/1.0	0,100,200,600,800	8 通道 torsal 腹部相 控阵线圈	
Kuru 等 ^[17]	2014.2	Siemens 3.0T	3100/52	280×210	128 imes 96	3.0/0.0	0,50,100,150,200, 250,800	多通道体部+脊柱 集成相空阵线圈	
Pang 等 ^[12]	2014.2	Philips 3.0T	4584/59	$160 \times 180 \times 60$	128×144	—	0,188,375,563,750	16 通道心脏+直肠 内线圈	
Zhang 等[18]	2014.11	Siemens 3.0T	6000/72	250×250	192×130	3.5/0.3	0,50,150,300,600, 900	骨盆相控阵线圈	

表 2 IVIM 试验统计学数据的比较及其意义

16 4	-1. 2	模型							
作者	刈豕	选择	ADC 值	D	f	D*	结论		
Riches 等[15]	50 例 PCaIc	单、双	1. 单指数>双指数; 2. 单指数: CG 和 PZ 内无差异, TN 在 CG 和 PZ 明显降低	双指数模型 CG 和 PZ 无明显区别; PZ 和 CG 内 TN 组织 明显减低。	CG 和 PZ 间无差别	PZ 和 CG, PZ 和 TN,CG 和 TN 各组 内无差别	单指数和双指数和 鉴别能力不加 地变化而不数度 使 加 招 信 号 变 成 描 数 模 型 好		
Dopfert 等[8]	13 例 PCa	双	_	PCa<正常组织	_	无明显减低	ADC 图能很好地发 现肿瘤		
Shinmoto 等[11]	26 例 PCa	单、双	TN 值明显低于 BPH和PZ	肿瘤值明显低于 BPH和PZ;PZPCa 值明显降低	PCa明显低于外周 带,但不低于 BPH; PZ PCa 值明显降低	PZ、BPH 和 PCa 中 没有明显统计学意 义;	灌注分数也许对 ADC降低有意义, 提供了组织的内部 特征;与Gleason分 级无明显相关性		
Liu 等[10]	29 例 PCa,28 例 BPH,24 例非癌	单、双	PZ>CG, TN 最低, 前列腺炎<正常外 周带, BPH <cg 增<br="">生</cg>	肿瘤区低于其他区; PZ前列腺炎低于正 常组织区	PZ 区明显大于 CG; PZ 前列腺炎低于正 常组织区	肿瘤 区 < 其他 区; PZ 前列腺炎<正常 组织区;CZ 内 BPH 明显低	3个参数与组织内 的结构有关		
Liu	19 例 CG PCa 57 例 PZ PCa	单、双	腺体增生>基质增 生> TN,基质与 TN部分重叠	TN<腺体增生;基 质>TN 且部分重 叠	TN<腺体增生;基 质增生与肿瘤无明 显差别	肿瘤<腺体和基质 增生	单、双指数模型都能 提高 CGPCa 发现和 诊断,同时分辨间最数 模型能更好精和整 別基质增生和肿瘤		
曹曙等[14]	21 例 PCa	双	BPH>PCa,低危组 >中高危组	BPH>PCa,低危组 >中高危组	排除 b=800,BPH <pca< td=""><td>_</td><td>D 与 f 成为潜在 PCa生物学标志</td></pca<>	_	D 与 f 成为潜在 PCa生物学标志		
Kuru 等[17]	27 例 PCa 23 例非 PCa	双	TN<正常组织	TN<正常组织;能 鉴别低级别和高级 别肿瘤	无差别	无差别	D也许能够提高图 像基础上的 TN 分 级		
Pang 等[12]	33 例 PCa	单	TN<正常组织;不 同 ADC 值可以 Gl- eason 评分相同	TN<正常组织	b<750,TN 内 f 升 高;b>750,TN 内 f 降低	_	扩散和灌注测量依 赖于b值的选择		
Zhang 等 ^[18]	11 例 LG, 37 例 HGPCa	双	平均值、中位数、 10th和75th与GS 相关,HG内平均 值、中位数、10th和 75th低于LG	与高级别肿瘤具有 明显相关性	与高级别 TN 没有 明显相关性	与高级别 TN 没有 明显相关性	D值在鉴别高低级 别更有意义		

注:PCa=前列腺癌,CG=中央腺体区,PZ:外周带区,TN=肿瘤,BPH=良性前列腺增生,HG=高级别肿瘤,LG=低级别肿瘤

26 例前列腺癌患者多 b 值 DWI 回顾性分析发现前列腺癌外周 带 D 值和 f 值明显高于其他部分,但 f 值在前列腺癌及前列腺 增生中没有显著性差异。Pang 等^[12-13] 研究发现前列腺癌 D 值 明显低于正常组织,肿瘤组织中高 b 值下 D 值明显低于低 b 值 下 D 值;同时报道 IVIM 依赖于 b 值变化:低 b 值时,f 值在诊 断疾病中具有明显统计学意义;而在高 b 值时,测量得到的 f 值 降低或不能分辨正常与病变组织。可能是因为在细胞环境复 杂,水分子运动扩散存在诸多屏障,水分子扩散在高 b 值时背 离经典自由扩散轨迹,是单指数扩散模型误差来源。有文献报 道^[14]f 值在前列腺癌低 b 值 IVIM-DWI 中对于其鉴别有统计 学意义并需排除特殊 b 值,与肿瘤内血管生成理论和 DCE 观察 结论相矛盾。在多数前列腺癌,f与血液灌注保持一致,f与转 运常数(Ktrans)和血液中血浆体积分数(Vp)呈正相关。在不 同 b 值下,相对于正常组织,肿瘤组织中的 D 值明显减少,有助 于鉴别高、低级别前列腺癌,是精确定量分析前列腺癌的重要 参数。基于 IVIM 模型,尚需进一步优化相关参数(相关技术参 数及结论见表 1、2)。

总之,IVIM-DWI 是在 DWI 基础上发展起来的,通过双指 数模型获得扩散系数 D值、伪扩散系数 D*值及灌注因子f值 等,能同时反映组织内水分子扩散和灌注状态,精确评估组织 内水分子扩散状况,在不使用示踪剂和对比剂的情况下分别得 到组织内单纯扩散与微循环灌注关系,有助于鉴别前列腺炎、 前列腺增生及前列腺肿瘤,为临床前列腺疾病诊断、定位以及 治疗方案制定提供重要参考。但在实际研究中,IVIM-DWI 技 术在前列腺疾病的应用时间较短,尚缺乏大样本数据,尚需优 化 b值,包括 b值的关键选值。如国内外资料大多为 b 值< 1000 s/mm²,而 b 值>1000 s/mm² 的资料甚少。

参考文献:

- [1] 阚秀芳,赵丽晶,李倩,等.前列腺癌诊断模式与发病率的研究进展[J].中国老年学杂志,2013,(23):6069-6071.
- [2] Turkbey B, Choyke PL. Multiparametric MRI and prostate cancer diagnosis and risk stratification[J]. Curr Opin Urol, 2012, 22(4): 310-315.
- [3] 王良,韩萍,高宏.前列腺癌 MR 检查和诊断共识[J].中华放射学 杂志,2014,48(7):531-534.
- [4] Pinto PA. Chung PH. Rastinehad AR, et al. Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging [J]. J Urol, 2011,186(4):1281-1285.
- [5] Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging[J]. Ra-

diology,1988,168(2):497-505.

- [6] Henkelman RM, Neil JJ, Xiang QS. A quantitative interpretation of IVIM measurements of vascular perfusion in the rat brain[J]. Magn Reson Med, 1994, 32(4):464-469.
- [7] Lee JT, Liau J, Murphy P, et al. Cross-sectional investigation of correlation between hepatic steatosis and IVIM perfusion on MR imaging[J]. Magn Reson Imaging, 2012, 30(4):572-578.
- [8] Dopfert J, Lemke A, Weidner A, et al. Investigation of prostate cancer using diffusion-weighted intravoxel incoherent motion imaging[J]. Magn Reson Imaging, 2011, 29(8):1053-1058.
- [9] Le Bihan D. Intravoxel incoherent motion perfusion MR imaging: a wake-up call[J]. Radiology, 2008, 249(3): 748-752.
- [10] Liu X, Peng W, Zhou I, et al. Biexponential apparent diffusion coefficients values in the prostate: comparison among normal tissue, prostate cancer, benign prostatic hyperplasia and prostatitis [J]. Korean J Radiol, 2013, 14(2):222-232.
- [11] Shinmoto H, Tamura C, Soga S, et al. An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer[J]. AJR,2012,199(4):496-500.
- [12] Pang Y, Turbey B, Bernardo M, et al. Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations[J]. Magn Reson Med, 2013, 69(2):553-562.
- [13] 叶锦棠,蔡文超,王岳,等.体素内不相干运动扩散加权成像对前 列腺癌的诊断价值[J].放射学实践,2014,29(5):474-476.
- [14] 曹曙.体素内无规则运动核磁成像技术在前列腺癌诊断中的应用 价值[J].第二军医大学,2014,54.
- [15] Riches SF, Hawtin K, Charles EM, et al. Diffusion-weighted imaging of the prostate and rectal wall; comparison of biexponential and monoexponential modelled diffusion and associated perfusion coefficients[J]. NMR Biomed, 2009, 22(3); 318-325.
- [16] Liu X, Zhou L, Peng W, et al. Differentiation of central gland prostate cancer from benign prostatic hyperplasia using monoexponential and biexponential diffusion-weighted imaging[J]. Magn Reson Imaging, 2013, 31(8):1318-1324.
- [17] Kuru TH, Roethke MC, Stieltjies B, et al. Intravoxel incoherent motion (IVIM) diffusion imaging in prostate cancer-what does it add[J]. J Comput Assist Tomogr, 2014, 38(4):558-64.
- [18] Zhang YD, Wang Q, Wu CJ, et al. The histogram analysis of diffusion-weighted intravoxel incoherent motion (IVIM) imaging for differentiating the gleason grade of prostate cancer[J]. Eur Radiol, 2015, 25(4):994-1004.

(收稿日期:2015-03-03 修回日期:2015-05-27)