・双能量 CT 影像学专题・

双能量 CT:回顾和展望

张龙江,卢光明

【摘要】 近年来随着技术的不断进步,各厂家研发的 CT 设备不但能实现能量 CT 扫描,而且不断扩展着能量 CT 的临床应用范围,显示了良好的前景。本文回顾并总结双能量 CT 技术的发展历程及应用,并对未来技术发展进行展望。

【关键词】 双能量 CT;体层摄影术,X线计算机;肺栓塞;心肌缺血;伪影

【中图分类号】R814.42 【文献标识码】A 【文章编号】1000-0313(2014)09-1016-05

DOI:10.13609/j. cnki. 1000-0313. 2014. 09. 009

双能量 CT 的概念可以追溯到 CT 问世之初,但真正进入 临床应用是在 2006 年双源 CT 问世之后。第一代双源 CT 使 得双能量 CT 从临床前技术转化为临床实用的技术,在胸腹部 疾病的诊断中体现了较高的应用价值。近年来随着技术的不 断进步,各厂家研发的 CT 设备不但能实现能量 CT 扫描,而且 不断扩展着能量 CT 的临床应用范围,显示了良好的前景。本 文回顾并总结双能量 CT 技术的发展历程及应用,并对未来技 术发展进行展望。

双能量 CT 技术

近年来双能量 CT 技术发展迅速,突破了以往的一些技术 瓶颈,从最初仅双源 CT 能实现双能量 CT 成像,到目前已有多 种技术可实现双能量 CT 扫描。这些双能量 CT 技术包括在不 同能量状态下进行两次连续扫描的单源 CT 系统、配备了 2 套 球管-探测器的双源 CT 系统、能在高低能量管电压下快速进行 切换的单源 CT 系统(快速千伏切换双能量 CT)以及配备有能 量解析探测器的单源 CT 系统(三明治探测器双能量 CT)^[1]。

连续采集的双能量 CT 最初应用于不能内置同步双能量扫 描硬件的单源 CT 扫描仪,可进行序列或螺旋扫描获得双能量 CT 数据。序列采集的双能量 CT 以轴面扫描运行,可在同一解 剖位置以固定能量谱(140 kV 和 80 kV)进行两次 CT 扫描,其 主要不足在于 80 kV 和 140 kV 数据采集的间隔和总采集时间 较长,因此未能得到推广应用。最近西门子医疗系统研发的连 续采集双能量 CT 可在单源 CT 系统进行高低能量的 2 次螺旋 扫描,但高低能量采集之间的时间间隔相对较长,该技术主要 用于非对比增强的双能量 CT,如尿路结石^[2]、痛风石检测及去 除骨伪影^[3]等方面。

双源双能量 CT 的 2 个球管能以不同的管电压运行,在相 对较小的空间配准下进行双能量数据采集,减小了空间和时间 配准错误的概率。双源 CT 能独立选择每个 X 线球管的管电 压(80/140 kV,100/140 kV),确保单个发生器不同管电压下光 子的输出相似^[4]。双源双能量 CT 可同步应用降低辐射剂量的 技术,如自动化管电流调制技术、迭代重建算法等,可调节的准 直器宽度能确保图像质量和适度的辐射剂量。新一代双源 CT 在蝶形滤器的远端增加了 0.4 mm 的锡滤器,可改善高低能量 X 线的分离,提高高能 X 线的平均能量,改善物质的组织对比, 提高双能量 CT 算法的性能。增加高能 X 线的滤过还可提高 低能 X 线的能量,使得 100/140 kV 的双能量 CT 成像成为可 能。双源双能量 CT 的主要不足:第 2 个球管的扫描视野相对 较小(26~33 cm),因此在体型较大患者的应用受到限制^[1,4]; 两个正交安装的球管探测器系统容易在非对应的正交探测器 阵列上产生横向散射,需要专门的散射校正算法预防图像质量 的降低,恢复图像对比;相隔 90°的 2 个球管探测器系统导致机 架旋转时间为 285 ms 和 500 ms 的情况下高低能量投影之间有 71 ms 和 125 ms 的时间间隔,这可能导致系统对运动比较敏 感,对动态研究(如对比增强 CT)并非是最佳的。

快速千伏切换双能量 CT 基于当前 2 个技术进展,即高频 低容量发生器和具有化学复制的石榴石晶体结构的新型闪烁 晶体。与以常规硫氧化钆为基础的闪烁晶体相比,这种新型闪 烁晶体材料光发射速度更快,余辉更慢,数据采样速度明显加 快,从而可允许在单个机架旋转期间从管电压快速切换的单个 球管发出的高低能量光子中进行交错式采集。两种能量数据 几乎同步采集(时间分辨力 0.5 ms),可明显限制双能量 CT 成 像期间的运动伪影而不会缩小扫描视野,因此其最大扫描视野 为 50 cm^[14,5]。快速千伏切换双能量 CT 的主要不足:高低能 量采集之间快速的切换时间(<0.25 ms)导致视觉整合期 X 线 谱的升降效应,延长了采集时间,降低了 2 个能谱的分离度;高 低能量投影数据之间的快速切换与双源 CT 系统相比,最大 X 线流量较低;快速千伏切换技术的硬件设计不能满足管电流调 制等降低辐射剂量技术的要求,可能导致相对较高的辐射剂 量。

三明治探测器双能量 CT 使用了双层探测器技术,其中上 层探测器由 ZnSe 或 CsI 组成,下层探测器由 Gd2O2S 组成。该 设备能同时收集单源 CT 全视野采集时单个光子能量的同向信 息,上层探测器吸收低能光子,深层探测器吸收高能光子。三 明治探测器双能量 CT 主要不足:由于高能低对比投影多于低 能高对比投影,使得软组织对比相对较差;相对较高的辐射剂 量以降低噪声并保留低对比检测能力。三明治探测器双能量 CT 技术目前还未商用^[1,4,5]。

图像后处理技术

双能量 CT 数据以 3 种方法显示,即非物质特异性方法、物质特异性方法以及能量特异性方法^[1]。所谓的非物质特异性显示方法即临床上常用的融合图像(或称为虚拟 120 kV 图

作者单位:210002 南京,南京军区南京总医院/南京大学医学院附属金陵医院医学影像科 作者简介:张龙江(1976-),陕西泾阳人,博士,副主任医师,主要从

事心血管和神经影像学研究工作。 通讯作者:卢光明,E-mail:cjr.luguangming@vip.163.com

像),该融合图像直接由机器重建产生。双源 CT 使用了线性融合方法获得常规融合图像。推荐使用 0.3 的线性融合比率获得融合图像,即 30%的权重来自 80 kV 数据,70%的权重来自 140 kV 数据,其图像质量类似于单能 120 kV 的 CT 图像^[1,4]。 非线性融合方法能最大程度地利用低能高对比图像数据,因而能最大程度地增加碘的对比,降低图像噪声,保证低对比检测能力。融合图像数据序列可自由地进行类似于常规螺旋 CT 的 图像后处理,如曲面重组、最大密度投影、容积再现等。

物质特异性显示方法主要包括碘显示技术、氙显示技术、 铁显示技术等。在所有物质特异性显示方法中,以碘显示技术 最为常用,临床应用也最广泛。目前用于物质化学成分和碘含 量分割、测量的数学算法有2种,即利用双源CT平台在图像域 进行的 3 种物质解析算法和利用快速千伏切换单源 CT 平台在 投影域进行的两种物质解析算法^[1]。在3种物质解析方法中, 可以根据3种理想物质(如软组织、碘和空气或者软组织、脂肪 和碘)的吸收特征洗择性证实碘含量;也可以从图像中减去碘 成分获得虚拟平扫图像[6],或者将其叠加在常规解剖图像上。 两种物质解析方法利用 2 种有着明显不同的有效原子序数和 物质密度系数的基物质(如碘和钙、碘和水)的吸收特征获得2 个系列图像,即物质密度图像。上述2种方法的差别在于3种 物质解析算法能提供密度(单位为 HU)信息和碘浓度(单位为 mg/mL)信息,而2种物质解析算法只能提供碘浓度信息。双 能量 CT 还提供了其他物质解析算法,例如分析尿路结石和痛 风石的化学成分,显示肌腱和韧带,提取钙技术显示微骨折造 成的骨髓水肿等。

能量特异性显示方法主要是虚拟单能谱成像,该技术可用 于校正线束硬化伪影、优化图像质量和噪声水平、去除金属伪 影。利用单源快速千伏切换技术可在投影域合成虚拟单能谱 图像,能量范围为 40~140 keV;双源 CT 由于高低能量的投影 数据存在 90°的相位差,在投影域进行虚拟单能谱成像难度较 大,目前仅能在图像域重组虚拟单能谱图像,能量范围为 40~ 190 keV。对上述 2 种双能量 CT 技术,在 60~70 keV 的能量 水平下能获得最佳的碘对比噪声比^[7,8]。该能量水平对应于 2 个 X线谱(80 kV 和 140 kV)平均能量的中点,在重建(或重组) 的虚拟单能谱图像上噪声最低。虚拟单能谱成像的最佳能量 水平与受检者的体型有关,在临床实践中应予以考虑。相比于 同等辐射剂量情况下的常规单能 120 kV 数据而言,优化的虚 拟单能谱成像技术改善了图像质量,但不应作为常规 CT 数据 采集技术^[3,9,10]。

双能量CT应用进展

近年来双能量 CT 的临床应用范围不断拓展和深入,体现 出重要的临床价值。本文以脑和头颈部、肺部、心脏、腹部和骨 骼肌肉系统为主线分述近年来双能量 CT 的应用情况。

1. 脑和头颈部

头颈部双能量 CT 可用于血管病变(直接去骨以及钙化斑 块去除以显示血管管腔的狭窄等)、血肿的定性及提高富血供 肿瘤的检出率。双能量 CT 在颅脑的应用研究主要集中于鉴别 颅内出血和外渗的碘对比剂,例如双能量 CT 可检测颅内出血 患者高密度血肿内的对比强化或对比剂漏出^[11,12]、鉴别急性缺 血性中风患者机械性血管再通后脑的出血和外渗的碘对比 双能量 CT 在头颈部的主要临床应用包括 2 个方面,即改善头颈部恶性肿瘤的显示和淋巴结病变的定性能力^[15]。Toepker 等^[16]的研究显示,双能量 CT 有助于改善口腔癌边界的评 估。在头颈部淋巴结病变的研究中,Yang 等^[17]的研究显示双 能量 CT 获得的虚拟平扫图像可代替常规平扫图像,在评估头 颈部淋巴结病变时可不进行平扫,从而减少患者接受的辐射剂 量。Tawfik 等^[18]的研究显示双能量 CT 碘含量和碘叠加图像 可鉴别正常、炎性和鳞癌转移性颈部淋巴结。

2. 肺部

肺部双能量 CT 主要集中于肺栓塞的检测和预后判断。双 能量 CT 能够在单次检查期间提供全肺的结构、功能(灌注和通 气)信息,显示急慢性肺栓塞后异常肺血流分布从而提示诊断, 尤其有助于显示外周性肺栓塞所致的灌注缺损^[19],评估治疗反 应。双能量 CT 肺灌注和通气联合成像可提高肺栓塞所致灌注 缺损的诊断特异度。Zhang 等^[20]的研究显示,利用双能量 CT 肺通气/灌注联合成像能显示肺栓塞所致的通气/灌注匹配或 不匹配现象,有助于鉴别灌注缺损的原因,提高外周性肺栓塞 的检出率。双能量 CT 肺血管增强软件亦可提高外周肺栓塞检 出的敏感性。Tang 等^[21]的实验研究证实该软件可提高亚段以 下肺栓塞的检出敏感性,但同时发现假阳性率很高,应用时应 特别注意。

基于双能量 CT 的灌注缺损算法可用于肺栓塞严重程度和 预后评估,包括半定量肺灌注缺损积分和绝对定量肺灌注缺损 容积评估法^[22-25]。如 Thieme 等^[22]提出灌注缺损积分可评估 肺栓塞的严重程度,肺灌注缺损积分和右心功能障碍的 CT 表 现间有良好的相关性,表明灌注缺损可预测急性肺栓塞患者的 预后。Bauer 等^[24]和 Apfaltrer 等^[25]则提出了肺灌注缺损容积 评估法,认为双能量 CT 显示的灌注缺损程度与肺栓塞患者的 临床负性事件有关,肺灌注缺损容积定量测量可证实低危患 者,从而避免患者进入重症监护室治疗。此外,Meinel 等^[26]提 出了自动化肺灌注血容量定量方法评估急性肺栓塞的严重程 度,他们发现全肺灌注血容量与血栓负荷、肺栓塞严重性的实 验室参数及患者需住入重症监护病房呈负相关。

双能量 CT 在肺栓塞之外也有应用,如氙气通气成像可评 估肺的通气功能^[27],但氙气增强双能量 CT 肺通气成像因常需 动态采集导致辐射剂量较高,氙气吸入产生的副反应及氙气昂 贵等也使其临床应用受到一定限制。双能量 CT 碘图和虚拟单 能谱成像技术还可用于肺结节定性诊断,有助于提高诊断效 能。

3. 心脏

双能量 CT 在心脏的应用主要是评估心肌缺血、鉴别心肌 梗死和心肌活性^[28]。利用双能量 CT 可检测心肌内血流分布, 检测在静息 SPECT 上不能显示的小的心肌缺血或梗死,尤其 是心内膜下心肌缺血;配合使用腺苷负荷的双能量 CT 能进一 步减少假阳性结果。利用双能量 CT 还有助于更好地鉴别心肌 梗死和存活心肌,因为梗死心肌在延迟 CT 上可出现强化。常 规 CT 上梗死心肌和正常心肌的对比差别不甚明显,利用双能 量 CT 的非线性融合技术和虚拟单能谱成像技术可提高延迟强 化的程度,从而有助于鉴别梗死心肌和存活心肌^[29,30]。最近 Meinel 等^[31]的研究显示静息-负荷双能量 CT 采集应该是评价 心肌血液供应的首选,增加了延迟双能量 CT 并未增加双能量 CT 的准确性,因此可省略延迟双能量 CT 以减少患者接受的辐 射剂量;此外,他们发现几乎半数在 SPECT 上表现为可以逆转 的灌注缺损在静息-负荷的双能量 CT 上被认为是固定灌注缺 损,因此在观察双能量 CT 图像时应注意这种与 SPECT 的不一 致。然而上述研究是初步的,距离临床应用还有较大距离。

4. 腹部

双能量 CT 在腹部的应用主要集中于肾(泌尿系)、肝、胰腺 和肾上腺。很多研究显示不同部位的虚拟平扫图像具有类似 于真正平扫的图像质量,在检测病变方面与真正平扫类似,从 而可以替代常规平扫,减少患者接受的辐射剂量,简化检查流 程,改善患者流通量^[6]。

在泌尿系统,最有意义的应用是尿路结石的检出和化学成 分分析。离体和活体研究均显示,利用双能量 CT 能可靠地区 分尿酸和非尿酸结石,这是非常重要的,因为尿酸结石可进行 内科保守治疗,而非尿酸结石需要取出结石或行体外碎石等有 创性治疗。第二代双源 CT 锡滤器的增加提高了高低能谱的鉴 别能力,不但能区分尿酸和非尿酸结石,还可以鉴别胱氨酸、草 酸钙、磷酸钙结石等^[1,32]。在肾病变方面,双能量 CT 的碘图和 虚拟单能谱成像可更好地鉴别高密度囊肿和强化的肾实性病 变^[33];利用碘图可以定量研究肾实性病变血管化的程度,提高 肾病变的鉴别诊断能力。此外,虚拟单能谱成像还可产生病变 特异性的波谱曲线,有助于肾病变的定性。

双能量 CT 在肾上腺的主要应用是鉴别肾上腺腺瘤和恶性 肾上腺肿瘤^[34]。尽管双能 CT 在鉴别肾上腺腺瘤方面有很高 的特异性和阳性预测值,但其敏感性较差,主要的原因是双能 量 CT 不能可靠地定性诊断大量乏脂质的肾上腺腺瘤。

双能量 CT 在肝的主要应用是检测富血供的病变^[35]。使 用低管电压(80 kV)的条件接近碘的 K 边缘,由于光电效应增 加,康普顿散射效应减少而增加了碘对 X 线的吸收,导致含碘 血管和实质器官的明显强化。使用低能水平(40~70 keV)的虚 拟单能谱成像技术也能明显改善病变的对比度及小的富血供 肝病变的检出率。此外,双能量 CT 还能提高局灶性肝病变的 定性诊断符合率,对碘浓度的定量检测还可作为肿瘤血管化的 可靠的生物影像指标,预测肿瘤对抗血管生成治疗的反应。

双能量 CT 在胰腺的应用主要在于胰腺癌的检测和鉴别诊断。常规增强 CT 胰腺实质期能较好地显示胰腺癌,这主要是因为胰腺癌是乏血供肿瘤,在胰腺实质期表现为弱强化或不强化,而此时胰腺实质明显强化,导致胰腺肿瘤和胰腺实质形成明显的对比,但仍有 11%的胰腺癌难以被检出。双能量 CT 低管电压条件下胰腺实质期胰腺实质和胰腺周围血管明显强化,肿瘤-胰腺对比明显增强。

5. 骨骼肌肉系统

双能量 CT 在骨骼肌肉系统的应用主要包括检测痛风石、 骨髓水肿、显示肌腱、韧带以及减少骨科金属植入物的伪影,其 中最成功的应用当属检测痛风石。一些研究显示双能量 CT 能 敏感、无创、可重复地检测可疑痛风患者的尿酸沉积,高度可重 复性地评估痛风石的体积,鉴别痛风和其他急性骨关节疾病 (如化脓性关节炎)^[36]。

常规 CT 常难以显示骨髓水肿, MRI 是显示骨髓水肿的最 佳技术。最近的研究显示利用双能量 CT 虚拟非钙化减影技术 可显示隐匿性髋关节骨折以及椎体压缩骨折等所致的骨髓水 肿^[37-38];该技术可从松质骨中减去钙,从而显示骨髓水肿。

常规 CT 能很好地显示骨内细节,但显示关节周围软组织 细节的能力有限。利用双能量 CT 三种物质胶原解析算法可分 离胶原成分,显示韧带和肌腱。但从临床应用角度看,双能量 CT 显示肌腱和韧带的能力仍需要进一步提高,比如在膝关节 的一些韧带如胫侧副韧带、横韧带及髌内外侧支持带等不能满 意显示^[36]。

骨科金属植入物在 CT 上常产生严重的伪影,干扰骨细节的显示。导致金属伪影的原因主要包括光子饥饿、部分容积效应、散射以及线束硬化伪影。金属植入物的类型、尺寸、形态及方向与伪影严重程度有关。利用双源双能量 CT、连续扫描单源双能量 CT 技术及快速千伏切换双能量 CT 获得的虚拟单能 谱图像均可减轻金属植入物造成的伪影,其减少伪影的程度与 金属植入物的成分及大小有关,最佳能量水平范围也较大 (95~150 keV)^[3,9,10]。尽管虚拟单能谱成像能有效降低金属植 入物的伪影,但其不能校正因光子饥饿现象在投影数据产生的 严重噪声,这可能是一些病例去伪影效果差的原因之一。

存在问题及未来发展的方向

尽管双能量 CT 自问世以来获得了较多的关注,也产生了 一批有意义的成果,但这些距离真正的临床普及应用还有相当 距离。目前双能量 CT 还缺乏可靠的定量技术,物质解析能力 还有待进一步完善,很多应用还不能成为常规检查项目,因此 双能量 CT 的临床应用之路道阻且长。然而我们应该看到双能 量 CT 确实在一些领域体现出较好的效果,在无特殊考虑(如无 特别要求降低辐射剂量的 CTA 检查、肥胖患者)时,可常规应 用双能量 CT 技术以提高病变检出率,提供物质特异性信息。

未来,双能量 CT 在肿瘤学的应用应进一步拓展。在目前 初步研究的基础上对常见重大疾病进行前瞻性多中心研究以 探究双能量 CT 在这些疾病诊断和随访中的作用。碘含量的绝 对定量技术应进一步完善,应该进一步评价其在肿瘤血管化评 估以及抗肿瘤血管生成治疗中的作用;应进一步研究双能量 CT 的数学算法以更好地在单次扫描中对多种物质成分进行解 析,从单成分分析到多成分分析,而且能有较高的定性准确率。

总之,双能量 CT 能提供组织器官结构和功能双重信息,是 对当前常规 CT 的一大补充,但对双能量 CT 这一新事物的研 究和应用还处于起步阶段,其潜力仍有待进一步挖掘。新事物 的出现及成长需要更多的关注和大量的研究,我们应该积极大 胆地进行技术创新,摒弃习以为常、沾沾自喜、墨守陈规的人之 天性,始终保持研发新技术的强烈好奇心^[39],必能推动双能量 CT 这项新技术的健康发展。

参考文献:

- [1] Marin D, Boll DT, Mileto A, et al. State of the art:dual-energy CT of the abdomen[J]. Radiology, 2014, 271(2):327-342.
- [2] Morsbach F, Wurnig MC, Müller D, et al. Feasibility of singlesource dual-energy computed tomography for urinary stone characterization and value of iterative reconstructions[J]. Invest Radiol, 2014,49(3):125-130.
- [3] Mangold S,Gatidis S,Luz O, et al. Single-source dual-energy computed tomography: use of monoenergetic extrapolation for a reduc-

tion of metal artifacts[J]. Invest Radiol,2014, Jun 27 [Epub ahead of print]

- [4] Lu GM, Zhao Y, Zhang LJ, et al. Dual-energy CT of the lung[J]. AJR, 2012, 199(5 Suppl): S40-S53.
- [5] Johnson TR. Dual-energy CT: general principles [J]. AJR, 2012, 199(5 Suppl):S3-S8.
- [6] Zhang LJ, Peng J, Wu SY, et al. Liver virtual non-enhanced CT with dual-source, dual-energy CT:a preliminary study[J]. Eur Radiol, 2010, 20(9):2257-2264.
- [7] Schneider D, Apfaltrer P, Sudarski S, et al. Optimization of kiloelectron volt settings in cerebral and cervical dual-energy CT angiography determined with virtual monoenergetic imaging[J]. Acad Radiol, 2014, 21(4):431-436.
- [8] Sudarski S, Apfaltrer P, W Nance J Jr, et al. Optimization of keVsettings in abdominal and lower extremity dual-source dual-energy CT angiography determined with virtual monoenergetic imaging [J]. Eur J Radiol, 2013, 82(10); e574-581.
- [9] Zhou C, Zhao YE, Luo S, et al. Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures [J]. Acad Radiol, 2011, 18(10): 1252-1257.
- [10] Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging[J]. AJR, 2012, 199(5 Suppl); S9-S15.
- [11] Postma AA, Hofman PA, Stadler AA, et al. Dual-energy CT of the brain and intracranial vessels[J]. AJR, 2012, 199(5 Suppl): S26-S33.
- [12] Watanabe Y, Tsukabe A, Kunitomi Y, et al. Dual-energy CT for detection of contrast enhancement or leakage within high-density haematomas in patients with intracranial haemorrhage[J]. Neuroradiology, 2014, 56(4):291-295.
- [13] Tijssen MP, Hofman PA, Stadler AA, et al. The role of dual energy CT in differentiating between brain haemorrhage and contrast medium after mechanical revascularisation in acute ischaemic stroke[J]. Eur Radiol, 2014, 24(4):834-840.
- [14] Won SY, Schlunk F, Dinkel J, et al. Imaging of contrast medium extravasation in anticoagulation-associated intracerebral hemorrhage with dual-energy computed tomography[J]. Stroke, 2013, 44(10):2883-2890.
- [15] Vogl TJ, Schulz B, Bauer RW, et al. Dual-energy CT applications in head and neck imaging[J]. AJR, 2012, 199(5 Suppl): S34-S39.
- [16] Toepker M, Czerny C, Ringl H, et al. Can dual-energy CT improve the assessment of tumor margins in oral cancer? [J]. Oral Oncol,2014,50(3):221-227.
- [17] Yang Y, Jia X, Deng Y, et al. Can virtual non-enhanced CT be used to replace true non-enhanced CT for the detection of palpable cervical lymph nodes? A preliminary study[J]. Jpn J Radiol, 2014,32(6):324-330.
- [18] Tawfik AM,Razek AA,Kerl JM,et al. Comparison of dual-energy CT-derived iodine content and iodine overlay of normal, inflammatory and metastatic squamous cell carcinoma cervical lymph nodes[J]. Eur Radiol,2014,24(3):574-580.
- [19] Zhang LJ,Zhao YE,Wu SY,et al. Pulmonary embolism detection with dual-energy CT: experimental study of dual-source CT in rabbits[J]. Radiology, 2009, 252(1):61-70.
- [20] Zhang LJ, Zhou CS, Schoepf UJ, et al. Dual-energy CT lung venti-

lation/perfusion imaging for diagnosing pulmonary embolism[J]. Eur Radiol,2013,23(10):2666-2275.

- [21] Tang CX, Zhang LJ, Han ZH, et al. Dual-energy CT based vascular iodine analysis improves sensitivity for peripheral pulmonary artery thrombus detection: an experimental study in canines[J]. Eur J Radiol, 2013, 82(12):2270-2278.
- [22] Chae EJ.Seo JB.Jang YM.et al. Dual-energy CT for assessment of the severity of acute pulmonary embolism: pulmonary perfusion defect score compared with CT angiographic obstruction score and right ventricular/left ventricular diameter ratio [J]. AJR,2010,194(3):604-610.
- [23] Thieme SF, Ashoori N, Bamberg F, et al. Severity assessment of pulmonary embolism using dual energy CT-correlation of a pulmonary perfusion defect score with clinical and morphological parameters of blood oxygenation and right ventricular failure[J]. Eur Radiol, 2012, 22(2):269-278.
- [24] Bauer RW, Frellesen C, Renker M, et al. Dual energy CT pulmonary blood volume assessment in acute pulmonary embolism-correlation with D-dimer level, right heart strain and clinical outcome [J]. Eur Radiol, 2011, 21(9):1914-1921.
- [25] Apfaltrer P, Bachmann V, Meyer M, et al. Prognostic value of perfusion defect volume at dual energy CTA in patients with pulmonary embolism: correlation with CTA obstruction scores, CT parameters of right ventricular dysfunction and adverse clinical outcome[J]. Eur J Radiol, 2012, 81(11): 3592-3597.
- [26] Meinel FG, Graef A, Bamberg F, et al. Effectiveness of automated quantification of pulmonary perfused blood volume using dual-energy CTPA for the severity assessment of acute pulmonary embolism[J]. Invest Radiol, 2013, 48(8):563-569.
- [27] Kong X, Sheng HX, Lu GM, et al. Xenon-enhanced dual-energy CT lung ventilation imaging: techniques and clinical applications [J]. AJR, 2014, 202(2): 309-317.
- [28] Vliegenthart R, Pelgrim GJ, Ebersberger U, et al. Dual-energy CT of the heart[J]. AJR, 2012, 199(5 Suppl), S54-S63.
- [29] Wichmann JL, Hu X, Kerl JM, et al. Non-linear blending of dualenergy CT data improves depiction of late iodine enhancement in chronic myocardial infarction[J]. Int J Cardiovasc Imaging, 2014 May 9. [Epub ahead of print]
- [30] Wichmann JL, Arbaciauskaite R, Kerl JM, et al. Evaluation of monoenergetic late iodine enhancement dual-energy computed tomography for imaging of chronic myocardial infarction[J]. Eur Radiol,2014,24(6):1211-1228.
- [31] Meinel FG, De Cecco CN, Schoepf UJ, et al. First-arterial-pass dual-energy CT for assessment of myocardial blood supply:do we need rest, stress, and delayed acquisition? Comparison with SPECT[J]. Radiology, 2014, 270(3):708-716.
- [32] Acharya S,Goyal A, Bhalla AS, et al. In vivo characterization of urinary calculi on dual-energy CT: going a step ahead with subdifferentiation of calcium stones[J]. Acta Radiol, 2014, Jun 17. pii: 0284185114538251. [Epub ahead of print]
- [33] Mileto A, Nelson RC, Samei E, et al. Impact of dual-energy multidetector row CT with virtual monochromatic imaging on renal cyst pseudoenhancement; In vitro and in vivo study[J]. Radiology. 2014, May 15;132856. [Epub ahead of print]
- [34] Helck A, Hummel N, Meinel FG, et al. Can single-phase dual-en-

ergy CT reliably identify adrenal adenomas? [J]. Eur Radiol, 2014,24(7):1636-1642.

- [35] Facchetti L, Berta L, Mascaro L, et al. Can sinogram-affirmed iterative reconstruction improve the detection of small hypervascular liver nodules with dual-Energy CT? [J]. J Comput Assist Tomogr, 2014, May 15. [Epub ahead of print]
- [36] Nicolaou S, Liang T, Murphy DT, et al. Dual-energy CT: a promising new technique for assessment of the musculoskeletal system [J]. AJR,2012,199(5 Suppl): S78-S86.
- [37] Reddy T, McLaughlin PD, Mallinson PI, et al. Detection of oc-

本刊可直接使用的医学缩略语

医学论文中正确、合理使用专业名词可以精简文字,节省 篇幅,使文章精炼易懂。现将放射学专业领域为大家所熟知的 专业名词缩略语公布如下(按照英文首字母顺序排列),以后本 刊在论文中将对这一类缩略语不再注释其英文全称和中文。 ADC (apparent diffusion coefficient):表观扩散系数 ALT:丙氨酸转氨酶;AST:天冬氨酸转氨酶 BF (blood flow):血流量 BOLD (blood oxygenation level dependent):血氧水平依赖 BV (blood volume):血容量 b:扩散梯度因子 CAG (coronary angiography):冠状动脉造影 CPR (curve planar reformation):曲面重组 CR(computed radiography):计算机 X 线摄影术 CT (computed tomography):计算机体层成像 CTA (computed tomography angiography):CT 血管成像 CTPI(CT perfusion imaging):CT 灌注成像 DICOM (digital imaging and communication in medicine): 医学数字成像和传输 DR(digital radiography):数字化X线摄影术 DSA (digital subtraction angiography):数字减影血管造影 DWI (diffusion weighted imaging):扩散加权成像 DTI (diffusion tensor imaging):扩散张量成像 ECG (electrocardiography):心电图 EPI (echo planar imaging):回波平面成像 ERCP(endoscopic retrograde cholangiopancreatography): 经内镜逆行胰胆管造影术 ETL (echo train length):回波链长度 FLAIR (fluid attenuation inversion recovery):快速小角度 激发反转恢复 FLASH (fast low angel shot):快速小角度激发 FOV (field of view):视野 FSE (fast spin echo):快速自旋回波 fMRI (functional magnetic resonance imaging):功能磁共 振成像 IR (inversion recovery):反转恢复 Gd-DTPA: 钆喷替酸葡甲胺 GRE (gradient echo):梯度回波 HE 染色:苏木素-伊红染色 HRCT(high resolution CT):高分辨率 CT

cult, undisplaced hip fractures with a dual-energy CT algorithm targeted to detection of bone marrow edema[J]. Emerg Radiol, 2014 Jul 2. [Epub ahead of print]

- [38] Wang CK, Tsai JM, Chuang MT, et al. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT [J]. Radiology, 2013, 269(2):525-533.
- [39] Schoepf UJ, Colletti PM. New dimensions in imaging.the awakening of dual-energy CT[J]. AJR,2012,199(5 Suppl):S1-S2. (收稿日期:2014-08-01)

MPR (multi-planar reformation):多平面重组 MIP (maximum intensity projection):最大密(强)度投影 MinIP (minimum intensity projection):最小密(强)度投影 MRA (magnetic resonance angiography):磁共振血管成像 MRI (magnetic resonance imaging):磁共振成像 MRS (magnetic resonance spectroscopy):磁共振波谱学 MRCP(magnetic resonance cholangiopancreatography): 磁 共振胰胆管成像 MSCT (multi-slice spiral CT):多层螺旋 CT MTT (mean transit time):平均通过时间 NEX (number of excitation):激励次数 PACS (picture archiving and communication system):图像 存储与传输系统 PC (phase contrast):相位对比法 PET (positron emission tomography):正电子发射计算机 体层成像 PS (surface permeability):表面通透性 ROC 曲线(receiver operating characteristic curve): 受试者 操作特征曲线 SPECT (single photon emission computed tomography):单 光子发射计算机体层摄影术 PWI (perfusion weighted imaging):灌注加权成像 ROI (region of interest):兴趣区 SE (spin echo):自旋回波 STIR(short time inversion recovery):短时反转恢复 TACE(transcatheter arterial chemoembolization):经导管 动脉化疗栓塞术 T₁WI (T₁ weighted image):T₁ 加权像 T₂WI (T₂ weighted image):T₂ 加权像 TE (time of echo):回波时间 TI (time of inversion):反转时间 TR (time of repetition):重复时间 TOF (time of flight):时间飞跃法 TSE (turbo spin echo):快速自旋回波 VR (volume rendering):容积再现 WHO (World Health Organization):世界卫生组织 NAA(N-acetylaspartate):N-乙酰天门冬氨酸 Cho(choline):胆碱 Cr(creatine): 肌酸 (本刊编辑部)