胃癌 CT 体积测量在预测其术后病理分期中的应用

王志聪，饶圣祥

【摘要】目的：探讨胃癌患者 CT 肿瘤体积与术后病理分期的相关性及其临床应用价值。方法：搜集 2015 年 4 月 - 2016 年 1 月确诊的胃癌患者 105 例（男 69 例，女 36 例，年龄 34 ~ 84 岁，平均 60.96 ± 9.95 岁）。术前一周内行 CT 增强扫描，通过人工测量门脉期每一层面的肿瘤面积乘以层厚叠加获得肿瘤体积，与术后病理分期进行关联性分析，将 T 分期分为 T1－2 组和 T3－4 组，N 分期分为 N0 组和 ≥ N1 组后进行 U 检验及 ROC 分析。结果：CT 肿瘤体积与术后病理 T 分期及 N 分期的相关性分别为 r = 0.80 (P < 0.001) 和 r = 0.66 (P < 0.001)，呈显著相关，不同 T 或 N 分期的 CT 肿瘤体积中位数值随着 T 或 N 分期的增加呈增长趋势，各组间差异均具有统计学意义 (P < 0.001)。T3－4 组或 ≥ N1 组的 CT 肿瘤体积分别明显 > T1－2 组或 N0 组 (P < 0.001)。CT 肿瘤体积预测 T1－2 期的 ROC 曲线下面积 AUC = 0.96 (95%CI 0.90 ~ 0.99)，95% 置信区间外的置信概率 P < 0.001，如果将 CT 肿瘤体积 ≤ 24.5 ml 作为预测 T1－2 期的阈值时，其敏感度为 92.9%，特异性为 90.5%，准确度为 91.4%。CT 肿瘤体积预测 N0 期的 ROC 曲线下面积为 0.84 (95%CI 0.76 ~ 0.90)，95% 置信区间外的置信概率 P < 0.001，如果将 CT 肿瘤体积 ≤ 23.4 ml 作为预测 N0 期的阈值时，其敏感度为 75.6%，特异性为 85.0%，准确度为 81.0%。CT 肿瘤体积预测 T1－2N0 期的 ROC 曲线下面积为 0.80 (95%CI 0.65 ~ 0.91)，95% 置信区间外的置信概率 P < 0.001，如果将 CT 肿瘤体积 ≤ 10.8 ml 作为预测 T1－2N0 期的阈值时，其敏感度为 71.9%，特异性为 80.0%，准确度为 73.8%。结论：CT 肿瘤体积与术后病理 T、N 分期均具有显著相关性，通过选取恰当的阈值，可为胃癌的术前临床分期提供良好的参考价值。

【关键词】胃肿瘤；体层摄影术；X 线计算机；肿瘤负荷；肿瘤分期

【中图分类号】R735.2；R814.4；R857.11；R730.4
【文献标识码】A
【文章编号】1000-0313(2019)10-1122-06
DOI:10.13609/j.cnki.1000-0313.2019.10.014
开放科学(资源服务)标识符(OSID):

CT volumetry of gastric cancer can potentially predict the pathologic stage

WANG Zhi-chong, RAO Sheng-xiang. Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China

【Abstract】Purpose: To evaluate the value of CT tumor volumetry of gastric cancer for predicting T and N stage with pathologic results as the reference standard. Methods: This study retrospectively evaluated 105 patients diagnosed with gastric cancer who underwent CT before surgery. CT tumor volumes were measured in portal venous phase. The correlations between CT tumor volumes and pathologic stages were analyzed. Mann-Whitney U-test was performed to assess differences between CT tumor volumes of different T-stages (T1－2 vs. T3－4) and N-stages (N0 vs. N≥1). Receiver-operating curve (ROC) characteristic analysis was further conducted to assess the diagnostic performance of significant parameters for prediction of T-stage and N-stage. Results: CT tumor volumes were significantly correlated with T stage and N stage (rho: 0.80, 0.66, respectively). The median value of CT tumor volumes in different T and N stage is a growing trend with the increase of T and N stage, which are statistically significant difference between the groups (P < 0.001). The differences between T1－2/N0 and T3－4/N1 stages in CT tumor volumes were statistically significant (P < 0.001). The area under the ROC curves (AUCs) for identification of T1－2 groups were 0.96, the CT tumor volumes of 24.5 ml predicted T1－2 stage with 92.9% sensitivity, 90.5% specificity and 91.4 accuracy. AUCs

作者单位：200032 上海，复旦大学附属中山医院放射科（王志聪，饶圣祥）；361003 福建，厦门大学附属第一医院放射科（王志聪）

作者简介：王志聪（1990—），男，福建厦门人，硕士，主要从事腹部影像学诊断工作。
were 0.84 for identification of N0 groups, the CT tumor volumes of 23.4 mL predicted N0 stage with 75.6% sensitivity, 85.0% specificity and 81.0 accuracy. AUCs were 0.80 for identification of T1–2N0 groups, the CT tumor volumes of 10.8 mL predicted T1–2N0 stage with 71.9% sensitivity, 80.0% specificity and 73.8 accuracy. Conclusion; CT tumor volumetry demonstrates potential value for predicting histopathologic T and N stage in patients with gastric cancer.

Key words Stomach neoplasms; Tomography, X-ray computed; Tumor burden; Neoplasm staging

胃癌是世界上常见的恶性肿瘤之一，位居恶性肿瘤死因顺位第2位，亚洲日本、韩国及我国是胃癌高发区，全球胃癌患者有一半以上来自东亚[1,2]。

手术切除是目前胃癌最主要的治疗方法，准确的术前临床分期对于选择合理手术方式和指导治疗，以及评估预后都具有重要的价值和意义[3]。术前的临床分期包括肿瘤的浸润程度（T）、淋巴结的转移情况（N）和远处转移（M）。临床分期的主要影像学检查包括电子计算机断层扫描（CT）和内镜超声（EUS）以及磁共振（MRI）等。

Kwee等[3,4]对 MDCT、EUS 和 MRI 三者预测病理分期的准确性进行综述，三者预测 T 分期的准确度分别为 77.1%～88.9%，65%～92.1% 和 71.4%～82.6%，MDCT 预测 N 分期的敏感度为 80.0%，特异度为 77.8%，EUS 分别为 70.8% 和 80.6%，MRI 分别为 68.8% 和 75.0%。内镜超声从 20 世纪 80 年代开始投入使用，对 T 分期预测具有较高的准确率，但内镜超声作为一种创伤性检查，并非适用于所有患者；内镜超声是一项高技术水平检查，对医生要求较高；此外，胃癌的大小、位置和组织学类型也是影响内镜超声分期准确性的重要因素，这使其无法得到广泛运用[4,5]。螺旋 CT 广泛应用于胃癌的临床分期，被认为是目前最好评估临床分期的检查，具有非侵人性评估肿瘤的浸润程度，淋巴结转移和远处转移的能力。CT 预测胃癌 T1 和 T2 期的准确率为 42.86%，对于 T3 和 T4 期的准确率为 89.3%[5]。

本研究运用螺旋 CT 测量胃癌肿瘤体积，回顾性分析胃癌患者 CT 肿瘤体积与术后病理分期的相关性，以期为临床分期提供参考价值。

材料与方法

1. 临床资料

搜集 2015 年 4 月～2016 年 1 月复旦大学附属中山医院胃癌患者 105 例，其中男 69 例，女 36 例，年龄 34～84 岁，平均年龄（60.96±9.95）岁。入选标准：病例术前均经胃镜病理活检证实为胃癌，无器官远处转移（M0），既往未经术前新辅助放化疗。所有患者行 CT 增强扫描后 1 周内行手术切除肿瘤并取得病理结果。排除标准：严重的肝肾功能障碍等手术禁忌患者；受检者支气管哮喘或有碘对比剂使用禁忌；无完整病理资料。

2. 扫描技术

79 例应用美国 GE Lightspeed 64 层 MSCT 扫描仪，管电压 120 kV，电流模式为 Smart mA，准直器宽度 64×0.625 mm，螺距 0.984；26 例应用德国 Siem ans Somatom Sensation 16 层 MSCT 扫描仪，管电压 120 kV，管电流 200 mA，准直器宽度为 16×0.75 mm，螺距 0.750。所有患者检查前禁食 8 h，检查前 20 min 饮水 800 mL，然后肌肉注射山莨菪碱 10 mg，再饮水 200 mL 后立即检查。患者取仰卧位，扫描前进行呼吸训练。所有患者均行平扫和动态增强扫描，扫描范围自膈顶至两肾下极水平。增强扫描采用高压注射器自肘正中静脉注射对比剂碘克醛（300 mg I/mL）1.5～2.0 mL/kg，注射流率为 3～5 mL/s，分别于注药后 30～50 s 和 80 s 行动脉期和门静脉期扫描。扫描层厚 5 mm，层间距 5 mm。

3. 肿瘤体积

本研究使用 GE 公司的 Centricity DICOM Viewer 3.1 版本的软件进行数据搜集。由 2 名放射科医师（3 年以上工作经验和 7 年以上工作经验）共同协作完成，在未知肿瘤病理分期的情况下游分析患者图像。通过人工测量肿瘤与膈顶至两肾下极水平，不包括肿瘤周围肿大淋巴结及受侵血管，若肿大和正常胃壁组织边界清晰，肿瘤体积包括周围厚度≥5 mm 的胃壁[10,11]。测量 1 例患者的 CT 肿瘤体积平均需花费大约 4 min 时间。

4. 病理分期

所有胃癌患者进行手术切除，切除标本由一名病理科医师（18 年以上工作经验）在未知肿瘤 CT 表现情况下游分析病理分期，术后病理分期参照 AJCC 胃癌 TNM 分期（第 7 版）[12]。

5. 统计分析

数据采用 MedCalc 12.1.4 软件进行统计学分析，CT 肿瘤体积与病理 T 分期和 N 分期的关联性分析使
用 Spearman 秩相关检验 (0.0～0.2 极弱相关或无相关；0.2～0.4 弱相关；0.4～0.6 中等程度相关；0.6～0.8 强相关；0.8～1.0 极强相关)，不同的 T 分期和 N 分期 CT 肿瘤体积的中位数值和关系采用 Kruskal-Wallis 分析，将 T 分期分为 T1-2 组与 T3-4 组，N 分期分为 N0 组和 ≥N1 组，不同 T 分组和 N 分组的 CT 肿瘤体积使用 Mann-Whitney U-检验进行比较。通过 ROC 曲线，进一步分析 CT 肿瘤体积预测术后病理 T 分期和 N 分期的应用价值。P<0.05 为差异有统计学意义。

结 果

1. 肿瘤部位及分期
胃癌部位位于贲门 11 例 (11/105, 10.5%)，胃体 40 例 (40/105, 38.1%)，胃窦 45 例 (45/105, 42.9%)，幽门 9 例 (9/105, 8.6%)。对于 T 分期情况，T1 分期 26 例 (26/105, 24.8%)，T2 分期 16 例 (16/105, 15.2%)，T3 分期 16 例 (16/105, 15.2%)，T4 分期 47 例 (47/105, 44.8%)。对于 N 分期情况，N0 分期 45 例 (45/105, 42.9%)，N1 分期 17 例 (17/105, 16.2%)，N2 分期 12 例 (12/105, 11.4%)，N3 分期 31 例 (31/105, 29.5%)。

2. CT 肿瘤体积与病理 T 分期
CT 胃癌肿瘤体积与病理 T 分期有显著相关性，CT 肿瘤体积与 T 分期的相关系数 r = 0.80 (P < 0.001)，呈强相关 (图 2)，不同 T 分期的 CT 肿瘤体积中位数值随着 T 分期的增加呈增长趋势。各组间差异均具有统计学意义 (P<0.001，表 1)。将 T 分期分为 T1-2 组和 T3-4 组，42 例归为 T1-2 组，63 例归为 T3-4 组。T1-2 组的 CT 肿瘤体积 明显 > T3-4 组 (P<0.001)。运用 ROC 曲线进一步分析 CT 肿瘤体积预测 T 分期的诊断价值，ROC 曲线下面积 (AUC) 为 0.96,95% 置信区间的相关概率 P<0.001 (图 3a)。

如果将 CT 肿瘤体积 ≤24.5 mL 作为预测 T1-2 期的阈值时，CT 肿瘤体积预测 T1-2 期的敏感度为 92.9%，特异度为 90.5%，准确度为 91.4%。如果将 CT 肿瘤体积 ≤19.9 mL 作为阈值时，其预测 T1-2 的敏感度、特异度和准确度分别为 83.3%、95.2% 和 90.5%。

表 1 T 分期及 N 分期 CT 肿瘤体积中位数值比较及相关分析结果

<table>
<thead>
<tr>
<th>分期</th>
<th>例数</th>
<th>中位值 (mL)</th>
<th>范围 (mL)</th>
<th>相关系数</th>
<th>P 值</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 分期</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>26</td>
<td>24.8%</td>
<td>8.2</td>
<td>3.1～16.4</td>
<td>0.80 < 0.001</td>
</tr>
<tr>
<td>T2</td>
<td>16</td>
<td>15.2%</td>
<td>18.7</td>
<td>4.5～55.6</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>16</td>
<td>15.2%</td>
<td>41.9</td>
<td>10.6～89.9</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>47</td>
<td>44.8%</td>
<td>63.8</td>
<td>13.8～157.9</td>
<td></td>
</tr>
<tr>
<td>N 分期</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.66 < 0.001</td>
</tr>
<tr>
<td>N0</td>
<td>45</td>
<td>42.9%</td>
<td>10.6</td>
<td>3.1～90.7</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>17</td>
<td>16.2%</td>
<td>28.1</td>
<td>9.6～134.7</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>12</td>
<td>11.4%</td>
<td>40.0</td>
<td>29.6～99.2</td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>31</td>
<td>29.5%</td>
<td>69.5</td>
<td>8.6～157.9</td>
<td></td>
</tr>
</tbody>
</table>

3. CT 肿瘤体积与病理 N 分期
CT肿瘤体积与病理 N 分期的相关系数 $r = 0.66$ ($P < 0.001$)，呈强相关。不同 N 分期的 CT 肿瘤体积中位数值的组间差异均具有统计学意义 ($P < 0.001$)。将 N 分期分为 N0 组和 ≥N1 组，45 例归为 N0 组，60 例归为 ≥N1 组。N0 组与 ≥N1 组 CT 肿瘤体积具有显著差异 ($P < 0.001$，表 2)。ROC 曲线下面积为 0.84，95% 置信区间的相应概率 $P < 0.001$ (图 3a)，如果将 CT 肿瘤体积 ≤23.4 mL 作为预测 N0 期的阈值时，CT 肿瘤体积预测 N0 期的敏感度为 76.2%，特异度为 85.0%，准确度为 81.0%。

4. T1~2N0 组 vs. T1~2Nx 组

将 T1~2 且 N0 期患者归为一组，共 32 例。其余患者归为另一组，共 73 例。T1~2 组间 CT 肿瘤体积具有显著差异 ($P < 0.001$)，ROC 曲线下面积为 0.94，95% 置信区间的相应概率 $P < 0.001$。如果将 CT 肿瘤体积 ≤19.9 mL 作为预测 T1~2 且 N0 期的阈值时，CT 肿瘤体积预测 T1~2 且 N0 期的敏感度为 90.7%，特异度为 87.8%，准确度为 88.6%。在 T1~2 组内细分 ≥N1 亚组和 N0 亚组，10 例归为 ≥N1 亚组，32 例归为 N0 亚组，N0 亚组和 N0 亚组中位数的组间差异具有统计学意义 ($P = 0.005$)，ROC 曲线下面积为 0.80，95% 置信区间的相应概率 $P < 0.001$ (图 3c)。如果将 CT 肿瘤体积 ≤10.8 mL 作为预测 T1~2N0 期的阈值时，CT 肿瘤体积预测 T1~2N0 期的敏感度为 71.9%，特异度为 80.0%，准确度为 73.8% (表 3)。

讨 论

我国的胃癌发病率和死亡率处于世界较高水平，近 30 年来总体呈上升趋势[12]，提高胃癌的术前临床分期对于治疗方案和手术方式的选择至关重要。本研究显示胃癌最常见的好发部位为胃窦部，其次为胃体和胃底，这与之前研究结果相一致[13]。本研究表明通过人工测量 CT 扫描的肿瘤体积，与术后病理 T 分期和 N 分期有着显著的相关性，可为胃癌患者的术前临床分期提供参考价值。Kikuchi 等[14]认为通过肿痛体积评估临床分期优于传统评估方法。国外部分文献报道 CT 对于胃癌的临床分期准确度为 65%~77% 不等，而预测早期胃癌 (ECOG) 的准确度为 20%~53%[15,16]。本研究显示 CT 肿瘤体积 ≤24.5 mL 作为临界值时，其预测 Ti~2 期的敏感度为 92.9%，特异度为 90.5%，准确度达到 91.4%。传统的 CT 评估胃癌临床分期对肿瘤的形态学特征、胃壁的厚度、胃壁增厚程度和肿瘤的强化程度影响，部分容积效应和胃壁厚薄不均，使胃癌多层结构难以观察，T 分期的评估更加困难[17]。CT 肿瘤体积是通过圈定每一层面的肿瘤范围，计算面积，乘以层厚叠加获得肿瘤体积，所以 CT 肿瘤体积受胃壁厚度、胃膨胀程度和肿瘤大体形态影响较小，虽部分层面肿瘤边界难以界定，但 CT 肿瘤体积绝对值较大，边界部分的体积对其影响较小，故测量重复性好，文献表明通过 CT 测量胃癌肿瘤体积是可行和可重复的[18-20]。

本研究显示 CT 肿瘤体积预测淋巴结转移的准确度、敏感度和特异度分别为 81.0%，85.0% 和 75.6%。Hasegawa 等[21]研究显示 MDCT 预测淋巴结转移的准确度、敏感度和特异度分别为 81.3%、46.4% 和 96.8%，两者研究结果的准确性相似，但是其预测淋巴结转移的敏感度为 46.4%，容易出现假阴性的情况，即一半以上的病理≥N1 期患者术前被误诊为 N0 期，这可能会影响临床医生的治疗方案选择，如术前的新辅助放化疗，以及影响手术方式，比如是否行淋巴结清扫。CT 肿瘤体积结合 MDCT 等形态学标准可能可以形成互补，进一步提高胃癌临床分期的准确性，这有待我们进一步的研究。

理论上，T1~2 期的患者比 T3~4 期的患者有更

| 表 2 T1~2/N0 组与 T3~4/≥N1 组患者 CT 肿瘤体积中位值 (mL) 及组间差异比较 |
|-----------------|-----------------|-----------------|-----------------|
| | T1~2/N0 (n=42) | T3~4/≥N1 (n=63) | Z |
| CT 肿瘤体积 | 10.2 | 42.7 | 7.931 <0.001 |
| 95% 置信区间 | 7.9~12.7 | 41.0~54.5 | 9.1~15.5 |
| 四分位间距 | 6.2~16.4 | 33.2~79.5 | 6.2~25.5 |

| 表 3 ROC 曲线分析 CT 肿瘤体积预测 T1~2 期及 N0 期及 T1~2N0 期的诊断价值 |
|-----------------|-----------------|-----------------|-----------------|
| 分期 | AUC (95% CI) | 阈值 (mL) | 敏感度 (%) | 特异度 (%) | PPV (%) | NPV (%) | 准确度 |
| T1~2 期 | 0.96 (0.90~0.99)| ≤24.5 | 92.9 (39/42) | 90.5 (57/63) | 86.7 (49/54) | 90.0 (57/60) | 91.4 (96/105) |
| N0 期 | 0.84 (0.76~0.90)| ≤23.4 | 75.6 (34/45) | 95.2 (60/63) | 92.1 (35/38) | 90.0 (60/67) | 90.0 (95/105) |
| T1~2N0 期 | 0.80 (0.65~0.91)| ≤30.8 | 71.9 (23/32) | 80.0 (68/85) | 92.0 (23/25) | 47.1 (18/77) | 76.8 (31/42) |

注：AUC, ROC 曲线下面积；95% CI, 95% 置信区间；PPV, 阳性预测值；NPV, 阴性预测值
良好的预后及更长的术后生存时间。Kikuchi 等[22]认为相对于 T3-4 期, T1-2 期的准确预测能够提供更有用的预后信息，但是对于 T1-2 期的胃癌患者来说，淋巴结的转移情况至关重要，淋巴结转移阳性的患者与不良预后密切相关[21]，而扩大淋巴结清扫术可能会增加该类患者的术后并发症和死亡率[24]，因此新辅助放化疗结合手术可能是该类患者的最佳治疗方案[26]。本研究显示在 T1-2 期的患者里，发生淋巴结转移的概率为 23.8%（10/42），≥N1 亚组与 N0 亚组的组间统计学差异可能表明即使肿瘤未突破深肌层，较大的肿瘤体积仍容易发生淋巴结转移。CT 肿瘤体积预测 T1-2N0 期患者的敏感度为 71.9%，特异度为 80.0%，准确度为 73.8%。

Kim 等[20]认为应用多排螺旋 CT (MDCT) 3D 重建技术计算胃癌肿瘤体积，与传统 CT 临床分期比较，其预测术前临床 T 分期和 N 分期有显著的提高，3DCT 与传统 CT 预测 T 分期的准确度分别为 84% 和 77%，预测 N 分期的准确度分别为 63% 和 65%。本研究显示 CT 肿瘤体积预测 T1-2 分期和 N0 分期的准确度分别为 91.4% 和 81.0%。目前测量肿瘤体积可能比 3D 重建计算肿瘤体积更加准确，这需要进一步对比研究。

本研究存在一定的局限性。第一，作为回顾性研究，本研究虽有 105 例患者，但 T1-2 期的患者相对于 T3-4 期的患者较少，这是由于在同一时段内，胃癌手术患者以 T3-4 期患者居多，而早期胃癌的病例数较少则与我国早期胃癌筛查的普及程度和国人的重视程度有关；第二，CT 肿瘤体积测量存在一定的误差，如肿瘤最上和最下方层的选择，肿瘤边缘的选定，周围淋巴结的干扰等，CT 肿瘤体积的测量也有一定的主观性。通过多人测量评估取平均值可能会减少这方面的误差，另外，Tirumani[24]最近研究显示使用三轴测量建立椭球近似体的体积可用于密切估计胃癌的肿瘤体积。随着 3D 技术的发展，全自动或半自动图像分割工具可能取代人工测量，获取肿瘤体积也会更加精确；第三，本研究的 CT 层厚为 5mm，可能会影响较小肿瘤的体积测量。然而，目前大部分体积测量相关的文献使用的 CT 层厚均为 3~5mm，对于其他检查，Lambrecht 等[27]也使用厚层为 5mm 的 MRI 图像来测量直肠癌的肿瘤体积。因此，我们认为 5mm 层厚的 CT 图像对肿瘤体积测量的影响不大。

总之，本研究得出 CT 肿瘤体积与术后病理 T、N 分期均具有显著的相关性，通过选取恰当的阈值，可为胃癌的术前临床分期提供良好的参考价值，从而指导临床医师选择合理的治疗方案及手术方式；另一方面，该方法有待更大样本量的研究，以得到进一步的验证，而 CT 肿瘤体积与患者的复发率及术后生存时间的相关性，则有待更长期的随访研究。

参考文献：
分层评估中的临床价值
糖尿病心肌病亚临床微循环障碍的
对本病诊断及鉴别诊断的优势及特异性
提炼出定向动能
像
队的研究表明
硬化影像评价进展

proach versus abdominal-transhiatal approach for gastric cancer
of the cardia or subcardia a: a randomised controlled trial[J]. Lan-
cet Oncol.2006.7(8):644-651.

chemoradiation for esophageal or junctional cancer[J]. N Eng-

[26] Tirumani SH, Shinagare AB, O'Neill AC, et al. Accuracy and fea-
sibility of estimated tumour volumetry in primary gastric gastro-
intestinal stromal tumours: validation using semiautomated tech-

[27] Lambrecht DM, Rao SX, Sassen S, et al. MRI and diffusion-
weighted MRI volumetry for identification of complete tumor re-

（收稿日期：2018-12-11 修回日期：2019-05-22）

SCMR 2019: 主题报告

本刊讯大会主席首都医科大学附属宣武医院放射科李坤成教授做了题为“中国健康成人CMRI特征追踪成像左室心肌应变参数测量研究”的主题演讲。

四川大学华西医院部发教授“心肌磁共振组织特征成像优势”的讲座介绍了心脏磁共振组织特征成像，尤其在糖尿病患者心脏评价方面的研究进展。解放军总医院第一医学中心放射科徐文宝教授团队的研究表示心衰患者左室室壁血流动力学变化，以下列几种测量左室室壁血流动力学的研究方法，提炼出定向动能（signed kinetic energy，SKE）作为研究指标，比较了健康志愿者和心脏患者的SKE特征。复旦大学附属中山医院高虎教授演讲的题目是冠脉MR成像研究。首都医科大学附属安贞医院范占明教授讲座的题目“CMR对Fabry病诊断与鉴别诊断”，介绍了Fabry病的定义、诊断标准和MRI对本病诊断及鉴别诊断的优势及特异性。首都医科大学附属宣武医院杨祥教授演讲的题目是动脉粥样硬化影像评价进展。上海交通大学附属第六人民医院张佳俊教授演讲的题目是急性心肌梗死CMR成像—临床应用与循证学依据。南昌大学附属第二医院余良庚教授演讲的题目是CMR在心肌梗死危险分层评估中的临床价值。中国医科大学附属北京医院侯阳教授团队的研究提示，循环miR-1是STEAMI后左心室重构的独立预测因素，可为早期治疗干预提供关键信息。北京大学第一医院邱建星教授团队的研究表明，MSI和SEE均可作为预测AMI节段性心肌收缩功能恢复与改善的独立指标，且MSI的预测准确性高于SEE。

25位专家就心肌梗死再灌注损伤的CMRI表现及评估价值、急性心肌梗死后MR心肌组织特征成像、急性左心室室壁心肌梗死CMR新技术成像及并发症评估、心脏磁共振在扩张性心肌病治疗决策中的价值、糖尿病心肌病亚临床慢性微循环障碍的MRI研究、非增强定量心肌MRI（NCMR）在非缺血性心肌病中的诊断价值、致心律失常性心肌病的CMR诊断进展、左室室壁心肌肥厚的诊断思维、心肌淀粉样样的磁共振诊断、心肌扩展成像的应用研究、心肌病CMR诊断进展、杜氏营养不良心肌损伤的MRI评价研究、CMR新技术——心肌应变、心肌应变技术评价室壁功能的研究进展、原发性心脏肿瘤的MR诊断、磁共振在心脏结节病的应用、心肌纤维化——浅谈CMR在肿瘤化疗中的作用、肺动脉高压的CMR研究、快速心脏磁共振成像及临床应用、新型Mapping后处理技术在心脏磁共振中的应用、磁共振血管成像在活体移植前术前评估中的作用等作了精彩的主题报告。